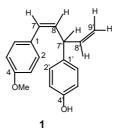
A New Nor-neolignan from Cremanthodium ellisii


Bao Ning SU, Qi Xiu ZHU and Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000

Abstract: A new nor-neolignan, named ellisinin A (1), has been isolated from the traditional Tibetan medicinal plants of *Cremanthodium ellisii*. Its structure has been determined on the basis of spectroscopic evidence, especially by 2DNMR (¹H-¹HCOSY, HMQC, HMBC).

Keywords: Cremanthodium ellisii; compositae; nor-neolignan; ellisinin A.

The genus *Cremanthodium* (Compositae) consists of about 55 species distributed in many countries. Among them, about 47 species grow in China, especially in the northwest and southwest regions¹. *Cremanthodium ellisii* Kitam. has been used as traditional Tibetan medicine for anti-inflammation, detoxication and relief of pain since ancient times². Now, we report a new nor-neolignan **1** isolated from the whole medicinal plant of *Cremanthodium ellisii* Kitam. collected in Huzhu county, Qinghai province of China.

Compound **1** was obtained as a yellowish gum, $[\alpha]_D^{20}$ -34.5 (c 0.45, CHCl₃). Its EI mass spectrum gave the molecular ion peak at m/z 266 [M]⁺, suggesting the molecular formula to be C₁₈H₁₈O₂, which was confirmed by ¹H, ¹³CNMR and DEPT data (see **Table 1**). ¹HNMR spectrum of compound **1** showed the presence of two p-substituted aromatic rings at δ 6.76 (2H, d, J=8.4Hz, H-3', H-5'), 6.89 (2H, d, J=8.5Hz, H-3, H-5), 7.04 (2H, d, J=8.5Hz, H-2', H-6'), 7.23 (2H, d, J=8.5Hz, H-2, H-6), two pairs of double bonds at δ 6.50 (1H, d, J=11.4Hz, H-7), 5.70 (1H, t, J=11, 4Hz, H-8), 6.00 (1H, ddd, J=17.6, 11.4, 6, 0Hz, H-8'), 5.15-5.19 (2H, m, H-9'), a methine proton signal at δ 4.48 (1H, m, H-7') and a methoxy group at δ 3.77 (3H, s, MeO). The above results were confirmed by ¹³CNMR and DEPT spectral data: two p-substituted aromatic rings (δ 129.8, C-1, 129.8, C-2, C-6, 113.6, C-3, C-5, 158.5, C-4; 135.6, C-1', 128.8, C-2', C-6', 115.3, C-3', C-5', 154.0, C-4'), two pairs of double bonds (δ 128.6, C-7, 131.6, C-8; 140.7, C-

Bao Ning SU et al.

8', 115.0, C-9'), a methoxy at δ 55.2 and a methine signal at δ 46.8, DEPT spectrum indicated that C-9' was a methylene carbon, suggesting C-8' and C-9' was a terminal double bond. The ¹HNMR signal of H-7 was a doublet, indicated that C-7 was connected with aromatic carbon. From above results, the skeleton of **1** was as given, confirmed by 2D¹H-¹HCOSY.

The ¹³CNMR signal of C-1 was overlapped by other carbon signals when used CDCl₃ as solvent (δ 129.8, C-1, C-2, C-6). However, it was separated just as expected when used CD₃COCD₃ as solvent (δ 130.3, C-1, 130.6, C-2, C-6). For determining the positions of methoxy and hydroxy, HMQC and HMBC spectra have been done. The HMBC correlations of $\delta_{\rm H}$ 3.77 (OMe) with $\delta_{\rm C}$ 159.6 (C-4), $\delta_{\rm H}$ 7.23 (H-2, H-6) with $\delta_{\rm C}$ 159.6 (C-4) and 130.3 (C-1), $\delta_{\rm H}$ 6.50 (H-7) with $\delta_{\rm C}$ 130.3 (C-1); $\delta_{\rm H}$ 4.41 (H-7') with $\delta_{\rm C}$ 134.7 (C-1'), 142.2 (C-8') and 132.5 (C-8), $\delta_{\rm H}$ 7.04 (H-2', H-6') with $\delta_{\rm C}$ 156.8 (C-4'), suggested that methoxy and hydroxy were connected with C-4 and C-4', respectivelly. H-7 and H-8 must to be cis-relationship according to their coupling constant (J_{7/8}=11.4Hz). Thus, the structure of **1** has been determined, named ellisinin A. It was a nor-neolignan compound.

CD ₃ COCD ₃				CDCl ₃		
No.	$\delta_{\rm C}$	DEPT	$\delta_{\rm H}$	$\delta_{\rm C}$	DEPT	$\delta_{\rm H}$
1	130.3	С		129.8	С	
2,6	130.6	CH	7.23 (d, 8.5)	129.8	CH	7.22 (d, 8.5)
3,5	114.4	CH	6.89 (d, 8.5)	113.6	CH	6.86 (d, 8.5)
4	159.6	С		158.5	С	
7	128.9	CH	6.50 (d, 11.4)	128.6	CH	6.53 (d, 11.4)
8	132.5	CH	5.70 (t, 11.4)	131.6	CH	5.67 (t, 11.4)
1'	134.7	С		135.6	С	
2',6'	129.3	CH	7.04 (d, 8.5)	128.8	CH	7.10 (d, 8.5)
3',5'	116.1	CH	6.76 (d, 8.5)	115.3	CH	6.77 (d, 8.5)
4'	156.8	С		154.0	С	
7'	47.8	CH	4.41m (m)	46.8	CH	4.51 (m)
8'	142.2	CH	6.00 (ddd, 17.6, 11.4, 6.0)	140.7	CH	6.01 (ddd, 17.6, 11.4, 6.0)
9'	114.6	CH_2	5.15-5.19 (m)	115.0	CH	5.65-5.70 (m)
MeO	55.4	CH ₃	3.77 (s)	55.2	CH ₃	3.81 (s)

Table1. ¹H, ¹³CNMR and DEPT spectral data of 1 (δ, ppm, TMS, 400MHz for ¹HNMR, 100MHz for ¹³CNMR)

Acknowledgments

This work was supported by the National Natural Science Foundation of China and the Foundation of the State Education Commission of China for Doctoral Program.

References

- 1. Northwestern Plant Institute of Botany, Academia, Sinica, '*Qinglin Flora*'', Science Press: Beijing, **1981**, Vol. I, 322-324.
- 2. Northwestern Plateau Institute of Biology, Academia, Sinica, "*The Records of Tibetan Medicines*", Qinghai People's Press: Xining, China, **1991**, 389-392.

Received 19 August 1998